An Empirical Perspective on the Energy Payback Time for Photovoltaic Modules

> Karl E. Knapp, Ph.D. Energy & Environmental Economics, Inc.

> > Theresa L. Jester Siemens Solar Industries

SOLAR 2000 Conference June 16-21, 2000 Madison, Wisconsin

Overview

- Energy payback determinants
- Methodology
- Process energy results
- Materials embodied energy results
- Energy payback time results
- Prospects

Energy Payback Depends on PRODUCTION and LOCATION

Two significantly different products were evaluated.

Single-Crystal Silicon

sc-Si SP75

Polysilicon Preparation	Ingot	
Crystal Growing	0	
Ingot Shaping		
Ingot Sizing	Wafer/	Cut Glass\
Mounting	Call	Wash / Deposit Mo Electrode
Wire Saw Cutting	Cen	Pattern 1: Isolation
Cleaning		Wash / Deposit CIG Metals
Chemical Etching		Selenize
Phosphorous Diffusion		Chemical Deposit CdS
Post Diffusion Etch		Pattern 2: Via
Oxidation		Transparent Conductor
Plasma Etch		Pattern 3: Isolation
Anti Reflective Coating		Test
Front Print		
Back Print		
Cell Test		
Packaging		
*		¥
Stringing	Module	Attach Leads
Circuit Assembly		Prelamination Lay-up
Prelamination Lay-up		Lamination & Cure
Lamination & Cure		Framing
Edge Trim & Inspection		Edge Trim & Inspection
Framing		IV Measurement & Labeling
IV Measurement & Labeling		Packaging
Packaging		

Thin-Film

CIS ST40

•Includes

All added process energyAll direct AND indirect materialsRequired upstream processes

•Does not include Energy embodied in facility Labor equivalent Transportation End-of-life Unnecessary upstream energy

sc-Si process energy requirements derived from production records and utility bills.

CIS process energy requirements derived from direct measurements, equipment ratings, and production records.

Production photovoltaic module payback is much less than its expected lifetime.

EPBT (years)

(@1700 kWh/m²/yr) 5598 Total = 3.3 year EPBT 6000 Module 3 1032 5000 2856 Material Cell 4000 1264 kWhe/kWp 3070 Total = 1.8 year EPBT 2 3000 619 Building Material 1344 2000 Module 1 1087 3302 Ingot Process 2742 Process 1000 1725 1363 Cell 0 sc-Si SP75 **CIS ST40 CIS ST40** sc-Si SP75 □ Process □ Materials □ Ingot □ Cell □ Module □ Bldg

Results provide empirical support for other analytical methods.

Conclusions, Notes & Prospects

- Production photovoltaic module payback is significantly less than its expected lifetime.
 - Payback time is 2-3 years.
 - Energy output is nine to seventeen times the input.
 - Indirect materials are important
 - Results lend empirical support for related research.
- Most other energy requirements are relatively small.
 - Equipment, building, labor equivalent
 - Balance of systems requirements can be significant.
- Energy intensity improvements driven by cost issues.
 - Yield, lower materials use and cost
 - Innovative processing and product design
- Prospects for reduced energy requirements are likely.

